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We show that a Dicke-type non-Hermitian Hamiltonian admits entirely real spectra by mapping it to the
“dressed Dicke model” through a similarity transformation. We find a positive-definite metric in the Hilbert
space of the non-Hermitian Hamiltonian so that the time evolution is unitary and allows a consistent quantum
description. We then show that this non-Hermitian Hamiltonian describing nondissipative quantum processes
undergoes quantum phase transition. The exactly solvable limit of the non-Hermitian Hamiltonian has also
been discussed.
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Although the choice of a proper set of Hermitian opera-
tors is sufficient to ensure the reality of the entire spectra and
unitary time evolution for a quantum system, it is neither
necessary nor dictated by any fundamental principle. It is
known since the pioneering work of Bender and Boettcher
�1� that PT-symmetric non-Hermitian operators with an ap-
propriate inner product in the Hilbert space give consistent
description of nondissipative quantum processes. The Hamil-
tonian that is non-Hermitian with respect to the conventional
inner product in the Hilbert space becomes Hermitian with
respect to the new inner product and results of a Hermitian
theory follow naturally. The same problem can be studied
using pseudo-Hermitian operator �2,3�, i.e., an operator that
is related to its adjoint through a similarity transformation.
Both the approaches involving pseudo-Hermiticity and PT
invariance are complementary to each other and open up
several new directions in the study of non-Hermitian opera-
tors �1–14�. It may be mentioned here that operators which
are non-Hermitian with respect to the conventional inner
product in the Hilbert space are generally used to simulate
dissipative processes. In this paper, we are concerned about a
subclass of such non-Hermitian operators which are also
pseudo-Hermitian and may be used consistently to describe
nondissipative processes with a modified inner product in the
Hilbert space.

The study on quantum phase transition �QPT� �15� has
received considerable attention in recent times and reveals
many aspects that are qualitatively different from that of
phase transition at finite temperature. The investigations so
far are mainly restricted to Hermitian Hamiltonian since an
entirely real spectra with a well-defined ground state is not
guaranteed a priori for a non-Hermitian Hamiltonian. The
dynamics of QPT in a closed system is governed by nondis-
sipative terms since the system at zero temperature is already
in thermal equilibrium. Unlike the phase transitions at finite
temperature, the time evolution from one phase to the other
is expected to be unitary for a system undergoing QPT. It is
thus nontrivial for a non-Hermitian Hamiltonian to describe

a QPT in a closed system since the time evolution is not
necessarily unitary. It is natural to ask at this juncture
whether or not one could discuss about QPT in a closed
system within the framework of PT-symmetric non-
Hermitian Hamiltonian. If the answer is in the affirmative, it
may open up new directions in the study of several inter-
linked areas of physics such as level statistics, quantum en-
tanglement, quantum chaos, etc. within the framework of
pseudo-Hermitian and/or PT-symmetric non-Hermitian
Hamiltonian. The enlarged parameter space of a non-
Hermitian Hamiltonian compared to its Hermitian counter-
part may prove to be an added advantage.

One of the main results of this paper is that a pseudo-
Hermitian deformation of the dressed Dicke model �DDM�
indeed undergoes QPT. We consider the non-Hermitian
Dicke-type Hamiltonian �16�,

H = �a†a + �1ei�1a2 + �2e−i�1a†2 + �ei�2J−a† + �e−i�2J+a

+ �ei�3J−a + �e−i�3J+a† + �0Jz, �1�

where � ,�0 ,�1 ,�2 ,� ,� ,� ,� ,�1 ,�2 ,�3 are real parameters; a
and a† are the standard bosonic annihilation-creation opera-
tors, and Jz, J	ªJx	 iJy are the generators of the SU�2�
algebra,

�a,a†� = 1,

�J+,J−� = 2Jz, �Jz,J	� = 	 J	. �2�

The Hamiltonian H commutes with the parity operator 
,


 = ei�N̂, N̂ = a†a + Jz + j , �3�

where j is the total spin-angular momentum. The eigenstates
of H have definite parity depending on whether the eigenval-

ues of the operator N̂ are odd or even. In general, the Hamil-
tonian H is non-Hermitian. The Hermitian Hamiltonian is
obtained in the limit,

� = �, � = �, �1 = �2, �4�

and is known as the DDM in the literature �17,18�. The stan-
dard Dicke model is obtained by a further choice of �1=�2
=�1=�2=�3=0 and �=�=�=�. The Dicke Hamiltonian has
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been studied extensively from the viewpoint of QPT
�19–21�, level-statistics �21�, quantum entanglement �22,23�,
and exact solvability �24�. Certain spintronics based models
�24,25� with Dresselhaus and Rashba-type spin-orbit interac-
tions can be mapped to the Dicke model, implying its rel-
evance in the study of two-dimensional semiconductor phys-
ics. The Tavis-Cummings model �26� is obtained in the limit
�1=�2=�=�=0 and it reduces to the Jaynes-Cummings
model �27� if the fundamental representation of the SU�2� is
used. Non-Hermitian versions of both the Tavis-Cummings
and the Jaynes-Cummings models have been studied previ-
ously �12�. The Hamiltonian with �0=�=�=�=�=0 is
known as the “Swanson model” �11� in the context of
PT-symmetric quantum mechanics and has been studied in
some detail �11,13�. In this paper, we study the Hamiltonian
H with its full generality and show the existence of QPT for
certain special choices of the parameters.

The Hamiltonian H can be mapped to a Hermitian Hamil-
tonian H through a similarity transformation when the fol-
lowing relations are satisfied,

�� − �� = 0, �1 = �2 = 0,

���1 − ���2 = 0, �1 � 0 � �2. �5�

To see this, define an operator � and its inverse as,

� = eÔ, �−1 = e−Ô,

Ô =
1

4
ln��1

�2
�a†a +

1

4
ln���

��
��Jz + j� . �6�

The operator � is positive definite and well defined provided
the following relations are satisfied,

�1

�2
 0,

�

�
 0,

�

�
 0. �7�

The conditions
�1

�2
0 and ��

�� 0 are sufficient to ensure that
� has the desired property. The much more stringent condi-
tion �7� is used to make the transformed Hamiltonian H Her-

mitian. The operator Ô can be constructed for several special
cases as follows:

Ô =
1

4
ln��1

�2
�a†a,

�1

�2
 0, � = � = � = � = 0,

Ô =
1

4
ln���

��
� �Jz + j� ,

�1 = �2 = 0,
�

�
 0,

�

�
 0,

Ô =
1

4
ln��1

�2
�a†a +

1

4
ln��

�
��Jz + j� ,

�1

�2
 0,

�

�
 0, � = � = 0,

Ô =
1

4
ln��1

�2
�a†a +

1

4
ln��

�
��Jz + j� ,

�1

�2
 0,

�

�
 0, � = � = 0. �8�

We will be working within the range of the parameters de-
fined by Eq. �7� unless mentioned otherwise. Using the
Baker-Campbell-Hausdorff formula,

eABe−A = B + �A,B� +
1

2!
†A,�A,B�‡ +

1

3!
�A,†A,�A,B�‡� + ¯ ,

�9�

we find

H = �H�−1

= �a†a + ��1�2�ei�1a2 + e−i�1a†2� + �0Jz

+ ����ei�2J−a† + e−i�2J+a� + ����ei�3J−a + e−i�3J+a†�
�10�

when condition �5� is satisfied. Note that H is Hermitian,
since �1�2, ��, and �� are positive definite due to condition
�7�. The Hamiltonian H is quasi-Hermitian, i.e., related to the
Hermitian Hamiltonian H through a similarity transforma-
tion. The pseudo-Hermiticity of H, i.e., H†=�+H�+

−1, follows
automatically where the metric �+ is given by �+ª�2. The
Hamiltonian H that is non-Hermitian under the Dirac-
Hermiticity condition becomes Hermitian with respect to the
modified inner product defined in the Hilbert space as,
��u ,v		�+

ª �u ,�+v	. In particular,

�u
Hv	 � �Hu
v	, ��u
Hv		�+
= ��Hu
v		�+

. �11�

Thus, with the modified inner product, the results of a Her-
mitian Hamiltonian follow automatically.

A comment is in order at this point. The atomic inversion
and the mean photon number are determined by the expec-
tation values of the operators Jz and a†a, respectively. Both
the operators Jz and a†a commute with �+ and, hence, are
Hermitian with respect to the modified inner product. How-
ever, operators such as Jx, Jy, a+a†, and i�a†−a�, which are
Hermitian with respect to the Dirac-Hermiticity condition,
are no longer Hermitian with respect to the modified inner
product. It may be noted here that corresponding to each
operator A that is Hermitian with respect to the Dirac-

Hermiticity condition, the operator Âª�−1A� is Hermitian
with respect to the modified inner product �2�. Consequently,

the operator Â is a physical observable in the Hilbert space
of H that is endowed with the metric �+. Following this
prescription, a set of SU�2� generators those are Hermitian
with respect to the modified inner product can be constructed
as follows:

Ĵx ª Jx cosh � − iJy sinh � ,

Ĵy ª Jy cosh � + iJx sinh � ,
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Ĵz ª Jz, � �
1

4
ln���

��
� . �12�

Similarly, annihilation operator â and its adjoint â† can be
obtained as

â ª ��1

�2
�1/4

a, â†
ª ��1

�2
�−1/4

a†. �13�

The non-Hermitian Hamiltonian H can be rewritten in terms
of these operators as

H = �â†â + ��1�2�ei�1â2 + e−i�1�â†�2� + �0Ĵz

+ ����ei�2Ĵ−â† + e−i�2Ĵ+â� + ����ei�3Ĵ−â + e−i�3Ĵ+â†� ,

�14�

where Ĵ	ª Ĵx	 iĴy.
The Hermitian Hamiltonian H has the form of the DDM

and has been extensively studied in the literature �17,18�. In
general, the Hamiltonian H is not exactly solvable. Using the
Bogoliubov transformation,

� b

b† � = � cosh � ei� sinh �

e−i� sinh � cosh �
�� a

a† � , �15�

either the counter-rotating terms J−a ,J+a† or the double-
frequency terms a2 ,a†2 in the Hamiltonian H can be elimi-
nated with all other terms appearing with renormalized cou-
pling constants. Both the counter-rotating and the double-
frequency terms can be eliminated simultaneously for fixed
values of � and � if a constraint involving the parameters
� ,� ,� ,� ,�1 and �2 is also satisfied. Let us choose � and �
as

� = − �1, � = tanh−1� �

2��1�2
� ,

� � � − ��2 − 4�1�2�1/2, �2  4�1�2 �16�

so that the double-frequency terms are eliminated from H. It
may be mentioned here that the choice of � and � as

� = − �1, �̃ = tanh−1� �̃

2��1�2

� ,

�̃ � � + ��2 − 4�1�2�1/2, �2  4�1�2 �17�

also removes the double-frequency terms. However, this so-
lution leads to unphysical situations and is discarded hence-
forth. Using condition �5� and demanding the removal of
counter-rotating terms, the values of �, �, and �3 are deter-
mined as

� =
��

2�2
, � =

��

2�1
, �3 = �1 + �2. �18�

The Hamiltonian H can be expressed in terms of the new
canonical operators b ,b† as

H = �0Jz + �b†b + �0 + �1�e−i�2J+b + ei�2J−b†� ,

�0 = −
�

2
, � =

��2 − 4�1�2��
4�1�2 − ��

,

�1 =� ��

2�1�2
�4�1�2 − ���1/2, �19�

which has the form of the Tavis-Cummings model or the
DDM in the rotating-wave approximation with the modified
coupling constants. All these coupling constants �0, �, and
�1 are real and � is also positive definite for �24�1�2.

The Hamiltonian H in Eq. �19� is exactly solvable �20�. It
can be decomposed in terms of two mutually commuting
operators K and L as follows:

H = �K + �1L + �0,

K = b†b + Jz,

L = e−i�2J+b + ei�2J−b† +
�0 − �

�1
Jz. �20�

The operator K is diagonal for a fixed spin j with the eigen-
values of Jz as �m− j�, m=0,1 , . . . ,2j and that of the bosonic
number operator b†b as n, n=0,1 ,2 , . . .. The operator L and,
hence, the operator H can be diagonalized in the basis
spanned by the eigenstates of K. Let 
n ,m ; j	H be a complete
set of orthonormal eigenstates of H with the eigenvalues
En,m;j. The orthonormality of 
n ,m ; j	H is based on the stan-
dard inner product in the Hilbert space. The eigenstates of H
with the same eigenvalues En,m;j are determined as


n,m; j	H = �−1
n,m; j	H, �21�

which form a complete set of orthonormal eigenstates under
the modified inner product defined in the Hilbert space of H.
Consequently, the non-Hermitian Hamiltonian H is also ex-
actly solvable and admits consistent quantum description.

The expectation value of an operator X in the Hilbert
space of H is determined as

��X		�+
= �n,m; j
�X�−1
n,m; j	H. �22�

Both Jz and a†a are Hermitian with respect to the Dirac-
Hermiticity condition as well as with respect to the modified
inner product. In particular, both Jz and a†a commute with �,
leading to the results

��Jz		�+
= �n,m; j
Jz
n,m; j	H,

��a†a		�+
= �n,m; j
a†a
n,m; j	H. �23�

Thus, both ��Jz		�+
and ��a†a		�+

are real. However, in gen-
eral, ��Jx		�+

, ��Jy		�+
, ��a+a†		�+

, and ��i�a†−a�		�+
are

complex,

��Jx		�+
= cosh ��Jx	H + i sinh ��Jy	H,

��Jy		�+
= − i sinh ��Jx	H + cosh ��Jy	H,

��a + a†		�+
= ��1

�2
�−1/4

�a	H + ��1

�2
�1/4

�a†	H,
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��a† − a		�+
= ��1

�2
�1/4

�a†	H − ��1

�2
�−1/4

�a	H, �24�

where �Jx	H and �Jy	H are real, while �a	H and �a†	H are
complex. As discussed before, corresponding to each opera-
tor A in the Hilbert space of H, the physical observable in
the Hilbert space of H that is endowed with the metric �+ is

Â=�−1A�. The expectation values of these capped operators

are real since ��Â		�+
= �n ,m ; j
A
n ,m ; j	H. Thus, a complete

and consistent description of the pseudo-Hermitian H is al-
lowed with the proper identification of the physical observ-
ables.

The Hamiltonian H in Eq. �19� is known to exhibit QPT
�20,21�. Although H is exactly solvable, it becomes tedious
to calculate the eigenspectra for large j. The Holstein-
Primakoff representation of the SU�2� generators

J− = �2j − �†��1/2�, J+ = �†�2j − �†��1/2, Jz = �†� − j ,

�25�

where � ,�† are the bosonic annihilation and creation opera-
tors satisfying �� ,�†�=1, can be used to study the thermody-
namic limit j→�. It is important to note that among the
SU�2� generators, only the combination Jz+ j appears in the
expressions of the parity operator 
 and the similarity op-
erator �. Consequently, � and 
 are well defined in the ther-
modynamic limit j→�. Following the standard method de-
scribed in �20,21�, the normal phase of H can be found to be
described in the range �1��1

c ����0, while the “super-
radiant phase” is described in the range �1�1

c, where �1
��2j�1. The Hamiltonian H and H have the same
eigenspectra since they are related to each other through a
similarity transformation. Moreover, note that the operators

Ô, � and �−1 are well defined in the thermodynamic limit j
→�. Thus, the Hamiltonian H also undergoes QPT with the
normal phase described in the range �1��1

c, while the super-
radiant phase is described in the range �1�1

c. The values of
the mean photon number and the atomic inversion above the
critical value �1

c can be determined as follows:

j−1��a†a		�+
=

1

2
�1 −

�0
2�2

�1
4 ��1

2

�2 ,

j−1��Jz		�+
= −

�0�

�1
2 , �1  �1

c . �26�

This is one of the main results of this paper.
The Hermitian Hamiltonian H in Eq. �10� with �1=�2

=�1=�2=�3=0 and ���=����
�2
�2j

reduces to the standard
Dicke model which is known to undergo QPT for �2�2

c

����0 /2 �21�. The non-Hermitian Hamiltonian H in Eq.
�1� with �1=�2=0, �1=�2=�3=0, �= 	�, �= 	�, and

H̃ = �a†a + �0Jz + �J−a† + �J+a 	 �J−a 	 �J+a†,

�27�

is equivalent to the standard Dicke Model through the simi-

larity transformation HDicke=�H̃�−1 with the operator Ô
given by

Ô =
1

2
ln��

�
��Jz + j�,

�

�
 0. �28�

Thus, the non-Hermitian Hamiltonian H̃ also undergoes QPT
for �2�2

c. The values of the atomic inversion and the mean
photon number above the critical value �2

c are identical to
that of the standard Dicke model:

j−1��Jz		�+
= − ��2

c

�2
�2

,

j−1��a†a		�+
=

2�2
2

�2 �1 − ��2
c

�2
�4, �2  �2

c . �29�

The results for finite j, as quoted in Ref. �21� for HDicke, are

equally applicable for H̃ since ��Jz		�+
= �Jz	HDicke

and
��a†a		�+

= �a†a	HDicke
.

The Hamiltonian H in Eq. �10� with its full generality
also undergoes QPT for 
�
�1,

� �
�0�� + 2��1�2�

��3 + �4�2 , �3 ����

2j
, �4 ����

2j
.

�30�

Consequently, H with the parameters satisfying the relations
in Eq. �5� also undergoes quantum phase transition for 
�

�1. The values of mean photon number and the atomic in-
version for ��1 can be determined as follows:

j−1��a†a		�+
=

1

2
�1 − �2�� �3 + �4

� + 2��1�2

�2

,

j−1��Jz		�+
= − �, � � 1. �31�

The mean photon number vanishes identically and the
atomic inversion is equal to −1 for �1. The QPT in the
Tavis-Cummings model and the Dicke model appear as spe-
cial cases of the general result described by Eqs. �30� and
�31�.

We have shown that a non-Hermitian version of the DDM
undergoes QPT. This is the first time in the literature that
QPT for pseudo-Hermitian operators has been described and
definitely broadens the scope of studying QPT in various
other non-Hermitian models. For the particular case of the
pseudo-Hermitian DDM, it is to be seen whether or not the
QPT is related to a change in level statistics and/or crossover
from entangled to disentangled states, as is the case for the
standard Dicke Hamiltonian �21,22�. Finally, as mentioned
earlier, the DDM can be mapped to certain spintronics-based
models �24,25�. Our results on QPT can be directly extended
to such models and may prove to be the testing ground of
pseudo-Hermitian quantum mechanics through appropriate
quantum engineering of two-dimensional semiconductor
devices.
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